基于非负矩阵分解(Nonnegative Matrix Factorization, NMF)的高光谱解混(Hyperspectral Unmixing ,HU)方法引起了大家的关注,因为可以将一个非负高光谱图像(Hyperspectral Imagery,HSI)数据矩阵分解为两个非负矩阵的乘积,分别对应于端元矩阵和丰度系数矩阵。目前,图约束的NMF算法已经被证明对高光谱解混是有效的,因为它们可以捕获HSI的几何特性。为了挖掘数据在混合过程中的几何结构和稀疏性,提出了一种稀疏的Hessian图正则化NMF(SHGNMF)算法。SHGNMF算法是将丰度矩阵的L1/2正则化器和Hessian图正则化项都添加到每个NMF模型中,同时采用乘法更新规则。最后用模拟数据和真实数据进行实验,验证了所提出的SHGNMF算法相对于其他NMF算法的优越性。
[PDF](0k)()