基于混沌PSO和K均值算法的移动用户分类
    点此下载全文
引用本文:朱利华.基于混沌PSO和K均值算法的移动用户分类[J].计算技术与自动化,2013,(4):57-60
摘要点击次数: 1519
全文下载次数: 89
作者单位
朱利华 (常州信息职业技术学院 软件学院, 江苏 常州213100) 
中文摘要:为了克服经典K-Means算法随机选择初始数据中心而易陷入局部最优解和聚类结果的不确定性问题,提出一种基于粒子群和K-Means算法的改进聚类算法以实现移动用户分类。首先,定义数据对象密度并采用改进的普里姆算法初始化聚类中心,然后,将此聚类中心用于初始化粒子位置,采用混沌粒子群算法寻优获得最优解作为最终的聚类中心,最后,采用经典K-Means算法根据最终聚类中心进行聚类。仿真实验表明文中方法能正确地实现移动用户分类,并具有较强的全局寻优能力和较快的收敛速度,弥补了经典K-Means方法的不足,具有较强的现实意义。
中文关键词:粒子群  K均值  分类  聚类
 
Classification for Mobile Users Based on Chaos-PSO and K-Means Algorism
Abstract:In order to conquer the clustering result uncertainty and easily obtaining the local optimum solution of random choosing initial data center in K-Means algorism, a improved algorism based on (Particle swarm optimization algorism, PSO) and K-Means used to realize the classification of mobile users is proposed. Firstly, the data object density is defined to improve prim algorism, and then the improved prim algorism was used to initialize the clustering center, then the clustering center is used to initialize the position of the particles, and the chaos-PSO algorism was used to get the global optimum solution, finally, the classic K-Means algorism was operated to cluster according to the final optimum clustering center. The simulation experiment shows the method in this paper can realize the classification for mobile users, and has the strong global optimizing ability and convergence rate, making up the defects of classic K-Means method. It is proved to have the strong practical significance.
keywords:particle  K-Means  classification  clustering
查看全文   查看/发表评论   下载pdf阅读器