权值与结构双确定法的RBF神经网络分类器 |
点此下载全文 |
引用本文:张雨浓,王茹,廖柏林,刘锦荣,林键煜.权值与结构双确定法的RBF神经网络分类器[J].计算技术与自动化,2014,(3):1-7 |
摘要点击次数: 1157 |
全文下载次数: 42 |
|
|
中文摘要:为了解决径向基函数(RBF)神经网络权值与结构难以确定的问题,基于权值直接确定法,及隐层神经元中心、方差、数目与神经网络性能的关系,提出一种边增边删型的网络权值与结构双确定法。在此方法基础之上,构建一种RBF神经网络分类器并探讨其分类性能和抗噪能力。计算机数值实验结果验证所提出的边增边删型的权值与结构双确定法能够快速、有效地确定网络的中心、方差和网络最优的权值与结构,所构造的模式分类器具有优越的分类性能和抗噪能力。 |
中文关键词:RBF神经网络 模式分类器 边增边删型 权值与结构双确定法 抗噪性 |
|
RBF Neural Network Classifier with Weights and Structure Determination Method |
|
|
Abstract:In order to solve the difficulties in determining the weights and structure of the radial basis function (RBF) neural network. Based on the weights-direct-determination (WDD) method and the relationship among centers, variances, the number of hidden-layer neurons and the performance of the neural network, a pruning-while-growing-type weights-and-structure-determination (PWGT-WASD) algorithm is proposed. On the basis of the PWGT-WASD algorithm, a kind of RBF neural network classifier is constructed, and its classifying and antinoise ability is further discussed in this paper. Computer numerical experiment results substantiate that the proposed PWGT-WASD algorithm can determine the centers,the variances and the optimal weights and structure of RBF neural network quickly and effectively. The constructed RBF pattern classifier has the superiority in terms of classification and antinoise ability. |
keywords:RBF neural network pattern classifier pruning-while-growing-type weights-and-structure-determination algorithm antinoise ability |
查看全文 查看/发表评论 下载pdf阅读器 |