基于组合模型的接地网腐蚀速率预测算法
    点此下载全文
引用本文:黄欢1,刘彦辰2,高翔2,彭敏放2.基于组合模型的接地网腐蚀速率预测算法[J].计算技术与自动化,2019,(3):79-83
摘要点击次数: 58
全文下载次数: 0
作者单位
黄欢1,刘彦辰2,高翔2,彭敏放2 (1. 贵州电网有限责任公司 电力科学研究院贵州 贵阳 5500022. 湖南大学 电气与信息工程学院湖南 长沙 410082) 
中文摘要:及时掌握并准确预测接地网的运行工况,从而对其进行预警和维护,是保证电力系统安全稳定运行的重要举措。针对接地网腐蚀数据的小样本与非线性特征,且目前单一预测模型存在预测精度不足的问题,提出了一种结合改进最小二乘支持向量机与误差校正的组合模型,将其应用于接地网腐蚀速率预测。该法采用遗传算法优化最小二乘支持向量机参数,为提高模型的预测精度,应用误差预测校正模型修正其预测结果,降低了极大误差出现的可能性,提高了预测模型的稳定性。结果表明,采用组合模型对接地网腐蚀速率进行预
中文关键词:接地网  腐蚀速率  预测  最小二乘支持向量机  遗传算法  误差校正
 
Corrosion Rate Prediction of Grounding Grid Based on Combined Model
Abstract:It is an important measure to ensure the safe and stable operation of the power system by timely grasping and accurately predicting the operating conditions of the grounding grid and thus alerting and maintaining it. Aiming at the small sample and nonlinear characteristics of grounding grid corrosion data,and the current single prediction model has insufficient prediction accuracy,this paper proposes a combined model of improved Least Squares Support Vector Machine(LSSVM) and error correction,which is applied to grounding grid corrosion rate prediction.The method uses Genetic Algorithm(GA) to optimize the parameters of LSSVM. In order to improve the prediction accuracy of the model,the error prediction correction model is used to correct the prediction results,which reduces the possibility of maximal error and improves the stability of the prediction model. The results show that the combined model is more accurate than LSSVM in predicting the corrosion rate of the grounding grid,and more suitable for predicting the corrosion rate of grounding grid.
keywords:grounding grid  corrosion rate  prediction  LSSVM  GA  error correction
查看全文   查看/发表评论   下载pdf阅读器