模型参数自适应迁移的多源域适应
    点此下载全文
引用本文:余欢欢,魏文戈.模型参数自适应迁移的多源域适应[J].计算技术与自动化,2019,(4):87-90
摘要点击次数: 135
全文下载次数: 0
作者单位
余欢欢,魏文戈 (南京航天航天大学 计算机科学与技术学院江苏 南京 211106) 
中文摘要:在新领域中,常常存在样本不充分或标记不足的问题。针对此问题,人们提出了域适应,该方法利用相关领域(源域)的知识来提高当前领域(目标域)学习性能。单个源域的知识往往不充分且类别完全相同的多个源域难以满足,同时域之间存在漂移问题。而现有的多源域适应模型难以解决类别不完全一致的问题,因此给多源域适应带来了较大的挑战。为此提出了一种基于模型参数自适应迁移的方法(Adaptive Transfer for ModelParameter,ATMP),通过对每个源域的模型参数进行私有和公有模型参数字典学习,同时将多个源域中所学的模型参数字典作为目标域的模型参数字典,然后通过对字典系数的行稀疏约束实现源域和目标域模型参数的自适应选择。除此之外,该方法迁移的是模型参数而不是数据本身,因此有效实现了对源域数据的隐私保护。经过一系列实验表明,在相关数据集上的实验显示了本文所提方法在聚类性能上的显著有效性。
中文关键词:多源域适应  模型参数自适应迁移  隐私保护  聚类
 
Model Parameter Transfer Adaptively for Multi-source Domain Adaptation
Abstract:In new fields,there is often the problem of insufficient samples or labels. For this problem,domain adaptation(DA) has been proposed,which uses the knowledge of the related domain (source domain) to improve the learning performance of the current domain (target domain). The knowledge of a single source domain is often insufficient and multiple source domains with identical categories are difficult to satisfy,and there is a shift problem between domains. However,the existing multi-source TL model is hard to solve the problem of sharing inconsistent categories,which brings a great challenge for multi-source TL. Aiming at this problem,an adaptive transfer for model parameter method has been proposed,which can learn the private and public model parameter dictionary in each source domain. The model parameter dictionary learned in the source domains are used as the target ones,and then the model parameter of source domains and target domain are selected adaptively by the row sparse constraint of the dictionary coefficients. In addition,the method can also be directly used for TL of privacy protection due to the fact that the knowledge is transferred just via the model parameters rather than data itself. After a series of experiments,the experiments on the relevant datasets show the significant effectiveness of the proposed method in clustering performance.
keywords:multi-source domain adaptation  model parameter transfer adaptively  privacy protection  clustering
查看全文   查看/发表评论   下载pdf阅读器