一种电力负荷预测混合模型研究 |
点此下载全文 |
引用本文:田珂1?覮,丁博2,马文栋1,赵卫华2,王坤2.一种电力负荷预测混合模型研究[J].计算技术与自动化,2020,(4):39-44 |
摘要点击次数: 448 |
全文下载次数: 0 |
|
|
中文摘要:为了提高短期负荷预测(STLF)的精度问题,采用了新的信号分解和相关分析技术,结合改进的经验模态分解法(IEMD)将负荷需求时间序列分解为若干个规则的低频分量。为了补偿信号分解过程中的信息损失,通过使用T-Copula进行相关分析来合并外部变量的影响。通过T-Copula分析,可从风险值(VaR)得出峰值负荷指示二进制变量,以提峰值时间负荷预测的准确性。将IEMD和T-Copula得到的数据应用于深度置信网络(DBN)来预测特定时间的未来负荷需求。 |
中文关键词:短期负荷预测 经验模态分解 T-Copula 峰值负荷 风险值 深度置信网络 |
|
A Hybrid Model for Power Load Forecasting |
|
|
Abstract:In order to improve the accuracy of short-term load forecasting (STLF),this paper uses new signal decomposition and correlation analysis technology,combined with improved empirical mode decomposition (iemd) to decompose the load demand time series into several regular low-frequency components. In order to compensate for the information loss during signal decomposition,T-Copula is used for correlation analysis to merge the effects of external variables. Through T-Copula analysis,the binary variable indicating peak load can be obtained from the value of risk (VaR) to improve the accuracy of peak time load forecasting. The data from IEMD and T-Copula are applied to deep confidence network (DBN) to predict future load demand at a specific time. |
keywords:short-term load forecasting empirical mode decomposition T-Copula peak load VaR DBN |
查看全文 查看/发表评论 下载pdf阅读器 |