基于随机森林的医联体双向转诊智能决策研究与应用
    点此下载全文
引用本文:周颖?覮,胡外光,陈敏莲,胡珊珊.基于随机森林的医联体双向转诊智能决策研究与应用[J].计算技术与自动化,2020,(4):134-137
摘要点击次数: 418
全文下载次数: 0
作者单位
周颖?覮,胡外光,陈敏莲,胡珊珊 (湖南省儿童医院 数据信息管理中心湖南 长沙410083) 
中文摘要:针对医联体平台中实际双向转诊过程存在转诊安排不及时,患者不满意等问题,设计了一种基于随机森林的双向转诊智能决策方法。该方法选取影响转诊的5个主要因素,建立了包括床位数、床位使用率、疾病治愈率、治疗费用、相距距离五大指标的智能转诊评分模型;然后利用大数据和随机森林的方法对主要因素进行分析,以分数的形式来衡量待转诊医院适合度。实践效果表明,基于这5个主要因素的预测可以罗列出多种转诊方案,为转诊安排精准化决策提供一种依据,从而提高转诊效率。
中文关键词:双向转诊  智能决策  医联体  随机森林
 
Intelligent Decision-making for Two-way Referral of Medical Alliance Based on Random Forest and its Application
Abstract:Aiming at the problems in the actual two-way referral process of medical alliance platform,such as untimely referral arrangement and unsatisfactory patients,a two-way referral intelligent decision method based on random forest was designed. In this method,five main factors affecting referral were selected and an intelligent referral scoring model was established,including the number of beds,bed utilization rate,disease cure rate,treatment cost and distance. Then,big data and random forest methods are used to analyze the main factors and measure the suitability of the hospital to be referred to in the form of scores. The practical results show that predictions based on these five main factors can list a variety of referral plans,provide a basis for accurate decision-making on referral arrangements,and improve the efficiency of referrals.
keywords:two-way referral  intelligent decision  medical alliance  random forest
查看全文   查看/发表评论   下载pdf阅读器