基于大数据深度神经网络与Agent的大规模任务处理方法
    点此下载全文
引用本文:黄 婕1,2.基于大数据深度神经网络与Agent的大规模任务处理方法[J].计算技术与自动化,2021,(4):125-130
摘要点击次数: 51
全文下载次数: 0
作者单位
黄 婕1,2 (1. 湖南省飞机维修工程技术研究中心, 湖南 长沙 4101242. 长沙航空职业技术学院 航空电子设备维修学院, 湖南 长沙 410124) 
中文摘要:因大规模任务处理模型在处理实际任务请求通常是基于历史数据的,若总依据经验和以往知识判断,会出现许多无法识别并处理的任务,以及出现模型过拟合等问题。提出了一种基于深度神经网络的计算模型进行大规模任务部署,并引用Agent强化学习效用进行评价,实现最佳虚拟网络映射方案。实验结果表明,这种BDTard方法法能满足大规模任务请求,稳定系统长期收益,保障了大数据环境下大规模任务处理的高效执行。
中文关键词:深度神经网络  强化学习  虚拟网络映射
 
Large-scale Tasks Processing Method Based on Deep Neural Network and Agent
Abstract:Since the large-scale task processing model is usually based on historical data in the processing of actual task requests, if the model is always judged based on experience and previous knowledge, there will be many tasks that cannot be recognized and processed, as well as problems such as model overfitting. A computing model based on deep neural network is proposed for large-scale task deployment, and the Agent reinforcement learning utility is evaluated to realize the optimal virtual network mapping scheme. The experimental results show that the BDTard method can meet the requirements of large-scale task, stabilize the long-term benefits of the system, and ensure the efficient execution of large-scale task processing in the big data environment.
keywords:deep neural network  reinforcement learning agent  virtual network mapping
查看全文   查看/发表评论   下载pdf阅读器