基于人工智能算法的主动配电网分解协调多目标优化研究
    点此下载全文
引用本文:缪辰宇1,刘 尧1,杨叶昕1,张 勇1,陈建钿1,丘冠新1,谢 虎2.基于人工智能算法的主动配电网分解协调多目标优化研究[J].计算技术与自动化,2022,(2):71-76
摘要点击次数: 461
全文下载次数: 0
作者单位
缪辰宇1,刘 尧1,杨叶昕1,张 勇1,陈建钿1,丘冠新1,谢 虎2 (1.广东电网有限责任公司珠海供电局广东 珠海 5190752.南方电网数字电网研究院有限公司广东 广州 510663) 
中文摘要:为了更好地促进中国电力行业的健康、平稳发展,对主动配电网分解协调进行了多目标的优化研究。采用了电源管理单元(power management unit, PMU)拓扑分析研究法,根据全局和分区的思想,对IEEE-30的数据进行了研究。结果表明:分区优化与全局优化相比能够明显降低网络损耗、运行成本和更新次数,分区的求解思路在拓扑分析模型中更加有效。然后将IEEE-30、IEEE-51和IEEE-112测试系统中得出的时间与免疫遗传算法的时间进行比较,发现拓扑约束分析能够使电源管理单元得到良好的优化效果。结论证实了本文所选取模型的有效性以及这种研究方法在企业管理的适用性。
中文关键词:人工智能  主动配电网  分解协调  拓扑分析模型
 
Design of Nonlinear Observer for Dynamic Positioning Based on Particle Swarm Optimization Algorithm
Abstract:In order to better promote the healthy and stable development of China’s power industry, this paper makes a multi-objective optimization research on the decomposition and coordination of active distribution network. This paper mainly adopts the power management unit (PMU) topology analysis research method, and studies the IEEE-30 data according to the idea of global and partition. The results show that partition optimization can significantly reduce the network loss, operation cost and update times compared with global optimization, and the partition solution idea is more effective in the topology analysis model. Then, the time obtained in IEEE-30, IEEE-51 and IEEE-112 test systems is compared with the time of immune genetic algorithm. It is found that topology constraint analysis can make the power management unit get a good optimization effect. Therefore, this confirms the effectiveness of the model selected and the applicability of this research method in enterprise management.
keywords:artificial intelligence  active distribution network  decomposition and coordination  topology analysis model
查看全文   查看/发表评论   下载pdf阅读器