一种结合机器学习的移动边缘计算的切换预测方法
    点此下载全文
引用本文:金建军1,郭熙2,李欠江2,李源2,谢海肖2.一种结合机器学习的移动边缘计算的切换预测方法[J].计算技术与自动化,2023,(3):136-140
摘要点击次数: 129
全文下载次数: 0
作者单位
金建军1,郭熙2,李欠江2,李源2,谢海肖2 (1. 中国联合网络通信有限公司 台州市分公司, 浙江 台州 3180002. 浙江大华技术股份有限公司,浙江 杭州 310053) 
中文摘要:随着移动通信的发展,减少通信延时成为关键性问题,因此,提出了一种使用机器学习方法的移动边缘计算(MEC)移动性管理。移动性决策基于参考信号接收功率(RSRP)值和不确定性预测器。使用神经网络建立预测器,输出不同相邻单元的RSRP平均值和标准偏差,推导了切换概率的封闭表达式。基于这些可能性,MEC服务器能够提前缓存用户服务,以便将切换期间的中断降至最低。实验结果表明,提出的方法能够满足实际需求。
中文关键词:机器学习  不确定性  边缘计算  神经网络  信号接收功率
 
A Handoff Prediction Method for Mobile Edge Computing Based on Machine Learning
Abstract:With the development of mobile communication, reducing communication delay becomes a key issue, therefore, this paper proposes a mobile edge computing (MEC) mobility management using machine learning method. Mobility decisions are based on Reference Signal Received Power (RSRP) values and uncertainty predictors. Use a neural network to build a predictor that outputs the RSRP mean and standard deviation for different neighboring cells. A closed expression for the switching probability is derived. With these possibilities, the MEC server is able to cache user services ahead of time in order to minimize disruption during handovers. The experimental results show that the proposed method can meet the actual needs.
keywords:machine learning  uncertainty  edge computing  neural networks  signal received power
查看全文   查看/发表评论   下载pdf阅读器