基于PBRS-SAC算法的无人车路径规划研究
    点此下载全文
引用本文:杨南禹,时正华.基于PBRS-SAC算法的无人车路径规划研究[J].计算技术与自动化,2024,(2):82-87
摘要点击次数: 146
全文下载次数: 0
作者单位
杨南禹,时正华 (河海大学 理学院江苏 南京 211100) 
中文摘要:针对复杂环境下无人车路径规划问题,在软演员评论家(SAC)算法的框架下进行改进。通过在奖励函数的设计上融合基于势能的回报塑形(PBRS)思想,并加入双连帧等训练技巧,设计了PBRS-SAC算法。之后在Ubuntu操作系统上搭建基于Gazebo的仿真环境,分别模拟静态与动态实验环境进行训练。最后,通过消融实验、敏感性测试实验与鲁棒性分析实验验证该算法的有效性。
中文关键词:强化学习  无人车  势能  奖励函数  路径规划
 
Study on Path Planning for Unmanned Vehicles Using PBRS-SAC Algorithm
Abstract:Aiming at the path planning problem of unmanned vehicles in complex environments, an improvement was made within the framework of the soft actor-critic algorithm. The PBRS-SAC algorithm was designed by incorporating the idea of potential-based reward shaping into the reward function design, and by integrating training techniques such as double concatenation frames. Subsequently, a simulation environment based on Gazebo was constructed on the Ubuntu operating system to simulate static and dynamic experimental environments for training. Finally, the effectiveness of the algorithm was assessed through ablation experiments, sensitivity testing experiments, and conducted robustness analysis experiments.
keywords:reinforcement learning  UGV  potential energy  reward function  path planning
查看全文   查看/发表评论   下载pdf阅读器