基于形状引导和不确定性估计的半监督三维医学图像分割
    点此下载全文
引用本文:宋文彪1,2,许叶彤1,2,王 毅1,2,杜晓刚1,2,雷涛1,2.基于形状引导和不确定性估计的半监督三维医学图像分割[J].计算技术与自动化,2024,(4):110-116
摘要点击次数: 188
全文下载次数: 0
作者单位
宋文彪1,2,许叶彤1,2,王 毅1,2,杜晓刚1,2,雷涛1,2 (1.陕西科技大学 电子信息与人工智能学院陕西 西安 7100212.陕西科技大学 陕西省人工智能联合实验室陕西 西安 710021) 
中文摘要:在基于深度学习方法的医学图像分割任务中,通常需要大量的标记数据。然而,获得可靠的标注是昂贵且耗时的。为此,提出了一种新的框架,采用具有形状约束和不确定性估计的双一致性正则化半监督方法,用于3D医学图像分割。首先,引入了一种基于学习目标区域的形状约束,通过联合学习两个网络的输出,加强几何形状约束,从而学习更可靠的信息。其次,设计了一种分割网络,以生成不同尺度的特征图,并引入了多尺度一致性损失来增强其稳定性。然而,由于这些特征图的空间分辨率不同,直接在每个像素上强制一致性可能导致不可靠的结果和信息丢失。因此,进一步提出了一种基于不确定性估计的多尺度一致性学习,以逐步学习有意义和可靠的特征区域,并增强模型的鲁棒性。实验结果表明,由于强大的无标记数据的知识挖掘能力,本文所提出的方法优于流行的半监督医学图像分割方法。
中文关键词:3D医学图像分割  半监督学习  形状约束  不确定性估计
 
Semi-Supervised 3D Medical Image Segmentation Based on Shape Guidance and Uncertainty Estimation
Abstract:In medical image segmentation tasks based on deep learning methods, a large amount of labeled data is often required. However, obtaining reliable annotations is expensive and time-consuming. To solve the above problems, a new framework is proposed for 3D medical image segmentation using a biconsistent regularized semi-supervised method with shape constraints and uncertainty estimation. Firstly, a shape constraint based on the learning target region is introduced, and the geometric constraint is strengthened by jointly learning the output of the two networks, so as to learn more reliable information. Secondly, a segmentation network is designed to generate feature maps at different scales, and multi-scale consistency loss is introduced to enhance its stability. However, due to the different spatial resolutions of these feature maps, forcing consistency directly on each pixel can lead to unreliable results and loss of information. Therefore, a multi-scale consistent learning based on uncertainty estimation is further proposed to gradually learn meaningful and reliable feature regions and enhance the robustness of the model. Experimental results show that the proposed method is superior to the popular semi-supervised medical image segmentation method due to the powerful knowledge mining ability of label-free data.
keywords:3D medical image segmentation  semi-supervised learning  shape constraints  uncertainty estimates
查看全文   查看/发表评论   下载pdf阅读器