基于AG-CWGAN-TCN-GCN的配电终端并网入侵检测系统
投稿时间:2025-09-09  修订日期:2025-12-17  点此下载全文
引用本文:
摘要点击次数: 12
全文下载次数: 0
作者单位邮编
骆洁艺* 广东电网公司 510006
曾瑞江 广东电网公司电力科学研究院 
王伟光 广东电网公司肇庆封开供电局 
基金项目:南方电网公司科技资助项目(GDKJXM20231495(030000KC23120094)
中文摘要:随着各类配电网智能终端大规模并网与深度融合,电网智能化与生产效率得到极大提升,其面临的网络入侵攻击风险也随之上升。大范围配电终端并网使入侵来源分散、类型多样、随机性强,传统入侵检测模型精度难以有效识别入侵特征,无法满足电网生产安全需求。针对这一现象,本文构建了一种基于AG-CWGAN-TCN-GCN的配电终端并网入侵检测模型。首先,融合注意力机制与Wasserstein生成对抗网络设计入侵数据生成方法,解决入侵样本稀缺引发的类不平衡问题;其次,构造TCN-GCN架构的流量时序数据识别算法,提取流量数据的时间序列特征,动态筛选高维流量特征的关键攻击模式,提高随机分散入侵数据特征的提取效率;最后,引入交叉注意力机制加强关键特征的深度交互与权重分配,实现入侵特征充分表达与融合。实验结果表明,所提模型在准确率、检测率、F1分数等关键指标上明显优于经典的入侵检测模型,展现出较强的检测能力和实用性。
中文关键词:入侵检测  CWGAN  注意力机制  配电终端
 
AG-CWGAN-TCN-GCN based Intrusion Detection Model for Distribution Terminal Grid Integration
Abstract:With the large-scale integration of smart terminals in distribution networks, grid intelligence and productivity have been greatly improved, but the risk of cyber intrusion has also increased. The wide integration of the terminals leads to fragmented attack sources, diverse intrusion types, and high randomness, which challenge conventional intrusion detection models in accurately identifying threats and meeting grid security demands. To address this problem, an AG-CWGAN-TCN-GCN based intrusion detection model for integrated distribution terminals is proposed in the paper. First, an attention-guided Wasserstein GAN is designed to generate intrusion samples, mitigating class imbalance caused by scarcity. Second, a TCN-GCN framework is constructed to capture spatio-temporal features from network traffic data, dynamically filtering key attack patterns from high-dimensional flow characteristics, and improving feature extraction efficiency. Finally, a cross-attention mechanism is incorporated to enhance deep interaction and weight allocation of critical features, enabling fuller representation and fusion of intrusion traits. Experimental results show that the proposed model outperforms classical intrusion detection methods in key metrics such as accuracy, detection rate, and F1-score, demonstrating strong detection capability and practical utility.
keywords:intrusion detection  CWGAN  attention mechanism  power distribution terminal
查看全文   查看/发表评论   下载pdf阅读器