基于混沌时间序列分析的无人船航行稳定性预测与容错控制系统仿真
投稿时间:2025-10-28  修订日期:2026-01-07  点此下载全文
引用本文:
摘要点击次数: 29
全文下载次数: 0
作者单位邮编
张天舒* 中国华电集团有限公司天津分公司 300203
杨帆 华电新能源集团股份有限公司天津分公司 
朱林 华电新能源集团股份有限公司天津分公司 
刁成梁 华电新能源集团股份有限公司天津分公司 
张昊 华电新能源集团股份有限公司天津分公司 
中文摘要:在复杂海洋环境下,无人船航行易受非平稳风、浪、流等多源扰动耦合作用,其动力学行为呈现强非线性、时变与混沌特性,导致线性假设的稳定性预测方法存在响应滞后、特征提取不完整等问题,难以实现对航行状态的精准感知与主动容错控制。为此,设计一种基于混沌时间序列分析的无人船航行稳定性预测与容错控制系统。在岸基仿真控制平台中输入稳定性预测与控制指令后,惯性测量单元依据这些指令采集无人船的横摇、纵摇与垂荡运动数据。稳定性预测单元采用混沌时间序列分析方法,从无人船运动数据中精准捕捉其非线性动力学特性,进而预测横摇角、纵摇角与垂荡加速度,以判断无人船的航行稳定性。容错控制器基于障碍李雅普诺夫函数,结合预测的横摇角、纵摇角与垂荡加速度数据,设计无人船航行稳定性的容错控制律,随后通过编码器解算出控制指令并发送至驱动器,以驱动动力装置调控无人船的航行状态。仿真实验结果表明:该系统能够准确预测无人船航行过程中的横摇角、纵摇角与垂荡加速度,实现航行稳定性的有效预测。在不同风速条件下,该系统稳定性预测的最大希尔不等系数约为0.18,表明其预测精度较高,能够有效完成无人船航行稳定性的容错控制任务。
中文关键词:混沌时间序列  无人船  航行稳定性  容错控制  横摇角  李雅普诺夫
 
Simulation of Unmanned Surface Vehicle Navigation Stability Prediction and Fault-Tolerant Control Based on Chaotic Time Series Analysis
Abstract:In complex marine environments, unmanned vessel navigation is susceptible to the coupling effects of multiple sources of disturbances such as non-stationary wind, waves, and currents. Its dynamic behavior exhibits strong nonlinearity, time-varying, and chaotic characteristics, leading to problems such as delayed response and incomplete feature extraction in the stability prediction method based on linear assumptions, making it difficult to achieve accurate perception and active fault-tolerant control of navigation status. Therefore, a prediction and fault-tolerant control system for unmanned ship navigation stability based on chaotic time series analysis is designed. After inputting stability prediction and control instructions into the shore based simulation control platform, the inertial measurement unit collects roll, pitch, and heave motion data of the unmanned ship based on these instructions. The stability prediction unit adopts the chaotic time series analysis method to accurately capture the nonlinear dynamic characteristics of unmanned ships from their motion data, and then predict the roll angle, pitch angle, and heave acceleration to determine the navigation stability of unmanned ships. The fault-tolerant controller is based on the obstacle Lyapunov function, combined with predicted roll angle, pitch angle, and heave acceleration data, to design a fault-tolerant control law for the stability of unmanned ship navigation. Then, the control instructions are calculated through an encoder and sent to the driver to drive the power device to control the navigation state of the unmanned ship. The simulation experiment results show that the system can accurately predict the roll angle, pitch angle, and heave acceleration of unmanned ships during navigation, achieving effective prediction of navigation stability. Under different wind speed conditions, the maximum Hill inequality coefficient predicted for the stability of the system is about 0.18, indicating that its prediction accuracy is high and it can effectively complete the fault-tolerant control task of unmanned ship navigation stability.
keywords:Chaotic time series  Unmanned surface vehicle  Navigation stability  Fault-tolerant control  Roll angle  Lyapunov
查看全文   查看/发表评论   下载pdf阅读器