基于主动立体视觉铁路道岔在位高精度测量方法
投稿时间:2025-12-10  修订日期:2025-12-17  点此下载全文
引用本文:
摘要点击次数: 3
全文下载次数: 0
作者单位邮编
郭江龙* 国能朔黄铁路发展有限责任公司 062350
闫志春 国能朔黄铁路发展有限责任公司数智运维工程分公司 
中文摘要:高速铁路道岔的在位几何参数对运行安全影响显著,为实现其在线精密监测,本文提出一种基于主动立体视觉的高精度测量方法。系统由双目工业相机与近红外激光条纹组成,可同步获取尖轨与基本轨的空间特征,并在轨向坐标系下精确定义密贴度与爬行量。依据一阶不确定度传播模型,构建了系统设计准则与精度保障方法;在算法方面,提出融合卡尔曼滤波与几何拓扑约束的对称拓扑中心线(STC)提取方法,有效提升振动与噪声条件下条纹中心的亚像素定位稳定性。实验表明,该方法长期运行可保持毫米级精度:标准工件最大误差 0.07 mm,现场密贴度与爬行量平均误差不超过 0.35 mm,零点漂移小于 0.06 mm。结果验证了系统的实时性与鲁棒性,可用于道岔状态的在线监测与预测性维护。
中文关键词:在位测量  主动立体视觉  条纹中心提取  卡尔曼滤波  高速铁路道岔
 
High-Precision In-Situ Measurement Method for Railway Turnouts Based on Active Stereo Vision
Abstract:The in-situ geometric parameters of high-speed railway turnouts are critical to operational safety. To achieve accurate online monitoring, this study proposes a high-precision measurement method based on active stereo vision. The system integrates a binocular industrial camera and a near-infrared laser stripe projector to simultaneously acquire the spatial features of the switch rail and the stock rail, and accurately define the rail–seat tightness and creeping displacement within a rail-aligned coordinate system. Based on first-order uncertainty propagation, system design criteria and precision assurance strategies are established. At the algorithmic level, a Symmetric Topological Centerline (STC) extraction method is developed by combining Kalman filtering with geometric–topological constraints, enabling robust sub-pixel localization of laser stripe centers under vibration and noise interference. Experimental results demonstrate that the proposed method maintains millimeter-level accuracy during long-term operation: the maximum deviation on standard test pieces is 0.07 mm, the average errors of tightness and creeping measurements in field tests are within 0.35 mm, and the zero-drift remains below 0.06 mm. These results verify the real-time performance and robustness of the system, indicating its suitability for continuous turnout monitoring and predictive maintenance.
keywords:in-situ measurement  active stereo vision  stripe center extraction  Kalman filtering  high-speed railway turnout
查看全文   查看/发表评论   下载pdf阅读器