基于NB-IoT技术智慧消防在线监控系统在电力隧道中的应用
投稿时间:2024-03-12  修订日期:2024-05-14  点此下载全文
引用本文:
摘要点击次数: 22
全文下载次数: 0
作者单位邮编
张源* 国网江苏省电力有限公司南京供电分公司 210019
中文摘要:为了实现对电力隧道的状态监测,提升消防安全管理能力,该研究设计了基于NB-IoT技术的智慧消防在线监控系统。该系统以STM32L431单片机为主控CPU,靠传感器采集信息,通过NB-IoT和LoRa模块将数据传输到云平台进行数据处理,并运用粒子群算法(Particle Swarm Optimizatio,PSO)算法优化误差反向传播算法(Error Back Propagation,BP)的参数得到PSO-BP模型,能对隧道的异常状态及时预警。大量仿真实验表明,本文方法火灾预警的最短响应时间为0.3s,火情响应效率高,能监测到隧道内的环境指标触发报警装置,具有一定的现实意义。
中文关键词:智慧消防在线监控系统  STM32L431单片机  NB-IoT  粒子群算法  PSO-BP模型
 
Application of intelligent fire online monitoring system based on NB-IoT technology in power tunnel
Abstract:In order to realize the status monitoring of the power tunnel and improve the ability of fire safety management, the research designed an intelligent fire online monitoring system based on NB-IoT technology. The system uses STM32L431 single chip microcomputer as the main control CPU, relies on sensors to collect information, and transmits data to the cloud platform through NB-IoT and LoRa modules for data processing, and uses Particle Swarm Optimizatio, particle Swarm Optimizatio, particle Swarm Optimizatio. PSO algorithm optimizes the parameters of Error Back Propagation (BP) to obtain the PSO-BP model, which can timely warn the abnormal state of the tunnel. A large number of simulation experiments show that the shortest response time of the proposed method is 0.3s, the fire response efficiency is high, and the environmental indicators in the tunnel can be monitored to trigger the alarm device, which has certain practical significance.
keywords:Hui fire online monitoring system  STM32L431 MCU  NB-IoT  Particle swarm optimization  PSO-BP model
查看全文   查看/发表评论   下载pdf阅读器