复杂山地环境下无人机群应急搜救策略研究
投稿时间:2024-03-20  修订日期:2024-05-16  点此下载全文
引用本文:
摘要点击次数: 24
全文下载次数: 0
作者单位邮编
文汇闻 湖南科技大学 411201
周少武* 湖南科技大学 411201
王汐 湖南科技大学 
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
中文摘要:在复杂山地环境(坡度较大)下,利用无人机群对丢失的动态目标进行应急救援搜索,是一项非常具有挑战性和现实意义的任务。本文研究了一种基于置信区域的改进内螺旋覆盖算法(IISCA),该算法能实现无人机全覆盖遍历并搜索到动态目标。算法以丢失目标的最后位置为基础,重点对该区域进行建模,并对地形坡度进行分析,无人机群将在坡度小于37°的区域展开搜索。引入置信区域的概念有助于固定搜索区域,避免无人机群进行重复搜索。仿真结果显示,相较于改进前的内螺旋覆盖算法,本文研究的算法在减少运行时间、提高搜索效率以及缩短搜索路径等方面表现更为优越。
中文关键词:无人机群  复杂山地环境  动态目标  应急救援搜索  置信区域  改进内螺旋覆盖算法(IISCA)
 
Research on emergency search and rescue strategy of UAV group in complex mountain environment.
Abstract:In complex mountainous terrain (with steep slopes), utilizing a swarm of drones for emergency rescue and search of lost dynamic targets is a highly challenging and practically significant task. In this paper, an improved internal spiral coverage algorithm(IISCA) based on confidence region is studied, which can achieve full coverage traversal of drones and search for dynamic target. Based on the last position of the lost target, the algorithm focuses on modeling the area and analyzing the slope of the terrain, and the Swarm of drones will search in the area with a slope less than 37°. Introducing the concept of confidence region helps to fix the search area and avoid repeated searches by drones swarms. The simulation results show that compared with the improved internal spiral algorithm, the proposed algorithm is superior in reducing the running time, improving the search efficiency and shortening the search path.
keywords:Swarm drones  Complex mountain environment  Dynamic target  Emergency rescue search  Confidence region  Improved internal spiral coverage algorithm(IISCA)
查看全文   查看/发表评论   下载pdf阅读器